United States Patent

US009158882B2

(12) 10) Patent No.: US 9,158,882 B2
Kumar 45) Date of Patent: Oct. 13,2015
(54) AUTOMATIC PIPELINING OF NOC g,ggg,%g i . 15; éggg ?grawal et all. S
A s wamura etal.
CHANNELS TO MEET TIMING AND/OR 6249902 BI 6/2001 Igusa et al
PERFORMANCE 6415282 Bl 7/2002 Mukherjea et al.
6,925,627 Bl 8/2005 Longway et al.
(71) Applicant: NETSPEED SYSTEMS, San Jose, CA 7,065,730 B2 6/2006 Alpert et al.
(US) 7,143,221 B2* 11/2006 Bruceetal.cc.c..... 710/113
7,318,214 Bl 1/2008 Prasad et al.
(72) Inventor: Sailesh Kumar, San Jose, CA (US) ;’;gg’ggg g% 2%8(1)8 Ezrrllzkhaan otal
7,808,968 Bl 10/2010 Kalmanek, Jr. et al.
(73) Assignee: NetSpeed Systems, San Jose, CA (US) 7,917,885 B2 3/2011 Becker
7,973,804 B2* 7/2011 Mejdrichetal. 345/614
(*) Notice: Subject to any disclaimer, the term of this 8,020,168 B2* 92011 Hooveretal. 718/107
patent is extended or adjusted under 35 8,050,256 BL 11/2011 Bao etal.
U.S.C. 154(b) by O days. (Continued)
(21) Appl. No.: 14/134,079 FOREIGN PATENT DOCUMENTS
@) et D192 G ey
(65) Prior Publication Data OTHER PUBLICATIONS
US 2015/0178435 Al Jun. 25, 2015 Abts, D, et al., Age-Based Packet Arbitration in Large-Radix k-ary
51y Int.Cl n-cubes, Supercomputing 2007 (SC07), Nov. 10-16, 2007, 11 pgs.
Gb GOGF 17/50 (2006.01) (Continued)
(52) US.CL . . .
CPC ... GOGF 17/5077 (2013.01); GO6F 17/505 ~ Lrimary Examiner — Phallaka Kik
(2013.01); GOGF 17/509 (2013.01); GO6F (74) A.Zlorney, Agent, or Firm — Procopio, Cory, Hargreaves
2217/04 (2013.01); GO6F 2217/84 (2013.01) & Savitch LLP
(58) Field of Classification Search
CPC .. GOGF 17/505: GOGF 17/509: GO6F 17/5077 1) ABSTRACT
USPC oo 716/138, 104, 122, 129, 130 Systems and methods for automatically generating a Network
See application file for complete search history. on Chip (NoC) interconnect architecture with pipeline stages
are described. The present disclosure includes example
(56) References Cited implementations directed to automatically determining the
number and placement of pipeline stages for each channel in
U.S. PATENT DOCUMENTS the NoC. Example implementations may also adjust the
4409838 A * 10/1983 Schomberg 73/602 buffer at one or more routers based on the pipeline stages and

5,432,785 A 7/1995 Ahmed et al.
5,764,740 A 6/1998 Holeander
5,991,308 A 11/1999 Fuhrmann et al.

configure throughput for virtual channels.

14 Claims, 14 Drawing Sheets

US 9,158,882 B2

Page 2
(56) References Cited 2013/0219148 Al 82013 Chenetal.
2013/0263068 Al 10/2013 Cho etal.
U.S. PATENT DOCUMENTS 2013/0326458 Al 12/2013 Kazda et al.
2014/0068132 Al 3/2014 Philip et al.
8,059,551 B2 11/2011 Milliken 2014/0092740 Al 4/2014 Wang et al.
8,099,757 B2 1/2012 Riedl et al. 2014/0098683 Al 4/2014 Kumar et al.
8,136,071 B2 3/2012 Solomon 2014/0115218 Al 4/2014 Philip etal.
8,261,025 B2* 9/2012 Mejdrich etal. 711/147 2014/0115298 Al 4/2014 Philip et al.
8,281,297 B2 10/2012 Dasu et al.
8,312,402 B1 11/2012 Okhmatovski et al. OTHER PUBLICATIONS
g’iié’zgg g% * égg}g El(ffrl::cahl'l'l'(' et al """"""" 713/600 Das, R, et al., Aergia: Exploiting Packet Latency Slack in On-Chip
8: 492:886 B2 7/2013 Or-Bach et al. Networks, 37th International Symposium on Computer Architecture
8,514,880 B2* 82013 Jayasimhaetal. ... 370/474 (ISCA "10), Jun. 19-23,2010, 11 pgs.
8,541,819 Bl 9/2013 Or-Bach et al. Ebrahimi, E., et al., Fairness via Source Throttling: A Configurable
8,543,964 B2 9/2013 Geet al. and High-Performance Fairness Substrate for Multi-Core Memory
8,601,423 Bl 12/2013 Philip et al. Systems, ASPLOS ’10, Mar. 13-17, 2010, 12 pgs.
8,635,577 B2 1/2014 Kazda et al. Grot, B., Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
8,661,455 B2* 2/2014 Mejdrichetal. 719/318 Effective QOS Scheme for Networks-on-Chip, Micro 09, Dec.
g’;};’ggz g% ggg}j CB}ct,lj(:ereafni)l'et. al """"""""" 370/397 Grot, B., Kilo-NQC: A Heter(_)geneous Network-on-Chip Architec-
8:793:644 B2* 7/2014 Michel et al. """"""""" 716/139 ture for Scalability and Service Guarantees, ISCA °11, Jun. 4-8,
8,798,038 B2* 82014 Jayasimha et al. ... 3705352 2011, 12 pes. _ _ o
8,990,833 B2* 3/2015 Kueseletal.o........ 719/313 Grot, B., Topology-Aware Quality-of-Service Support in Highly
2002/0071392 Al 6/2002 Grover et al. Integrated Chip Multiprocessors, 6th Annual Workshop on the Inter-
2002/0073380 Al 6/2002 Cooke et al. action between Operating Systems and Computer Architecture, Jun.
2002/0095430 Al 7/2002 Egilsson et al. 2006, 11 pgs.
2003/0088602 Al* 5/2003 Duttaetal. 708/700 Jiang, N, et al., Performance Implications of Age-Based Allocations
2004/0216072 Al 10/2004 Alpert et al. in On-Chip Networks, CVA MEMO 129, May 24, 2011, 21 pgs.
2005/0147081 Al 7/2005 Acharya et al. Lee, J. W, et al., Globally-Synchronized Frames for Guaranteed
2006/0031615 A1* 2/2006 Bruceetal ... 710/240 Quality-of-Service in On-Chip Networks, 35th IEEE/ACM Interna-
%88?;8}?%528 ﬁ} zgggg Eﬁsee fal. tional Symposium on Computer Architecture (ISCA), Jun. 2008, 12
pgs.
%88;;8%‘;‘&7‘2 ﬁ} }?;388; (S:}(l)ggre;ta;i' Lee, M. M., et al., Approximating Age-Based Arbitration in On-Chip
2007/0267680 Al 11/2007 Uchino et al. Networks, PACT "10, Sep. 11-15, 2010, 2 pgs.
2008/0072182 Al 3/2008 He et al. Li, B, etal., CoQoS: Coordinating QoS-Aware Shared Resources in
2008/0120129 Al 5/2008 Seubert et al. NoC-based SoCs, J. Parallel Distrib. Comput., 71(5), May 2011, 14
2009/0070726 Al 3/2009 Mehrotra et al. pegs.
2009/0231348 Al* 9/2009 Mejdrichetal. 345/506 International Search Report and Written Opinion for PCT/US2013/
2009/0268677 Al 10/2009 Chou et al. 064140, Jan. 22, 2014, 9 pgs.
%8?8; 83 }‘ 8?23 ﬁ} 1%; %8(1)8 g[ur}il_h etal. International Search Report and Written Opinion for PCT/US2014/
uehiro
2011/0035523 Al 2/2011 Feero et al. ?12003’. Mar. 26, 2014, 9 pgs. .
5011/0060831 Al 32011 Ishii et al. nternational Search Report and Written Opinion for PCT/US2014/
2011/0072407 Al 3/2011 Keinert et al. 012012, May 14, 2014, 9 pgs. .
2011/0154282 Al 6/2011 Chang et al. Ababe_l, C., et al.,_ Achieving Net\yorl_(on Chip Fau_lt Tolerance by
2011/0276937 Al 11/2011 Waller Adaptive Remapping, Parallel & Distributed Processing, 2009, IEEE
2012/0022841 Al 1/2012 Appleyard International Symposium, 4 pgs.
2012/0023473 Al 1/2012 Brown et al. Beretta, I, et al., A Mapping Flow for Dynamically Reconfigurable
2012/0026917 Al 2/2012 Guo et al. Multi-Core System-on-Chip Design, IEEE Transactions on Com-
2012/0110541 Al 5/2012 Geetal. puter-Aided Design of Integrated Circuits and Systems, Aug. 2011,
2012/0155250 Al 6/2012 Carney et al. 30(8), pp. 1211-1224.
2012/0209944 Al* 82012 Mejdrichetal.c..... 709/213 Gindin, R., et al., NoC-Based FPGA: Architecture and Routing,
%83;88; (1)32; ﬁ} %ggg (Ci}eug(f;rzll' Proceedings of the First International Symposium on Networks-on-
2013/0103369 Al 4/2013 Huynh et al. Chip (NOCS?07), May 2007, pp. 253-262. .
5013/0117543 Al* 5/2013 Venkataramanan et al. .. 712/220 Yang, J., et al., Homogeneous NoC-based FPGA: The Foundation for
2013/0151215 Al 6/2013 Mustapha Virtual FPGA, 10th IEEE International Conference on Computer and
2013/0159944 Al 6/2013 Uno et al. Information Technology (CIT 2010), Jun. 2010, pp. 62-67.
2013/0174113 Al 7/2013 Lecler et al.
2013/0207801 Al 82013 Barnes * cited by examiner

U.S. Patent Oct. 13, 2015 Sheet 1 of 14 US 9,158,882 B2

A &
b s o

FIG. 1(a)
RELATED ART

5l

US 9,158,882 B2

Sheet 2 of 14

Oct. 13, 2015

U.S. Patent

18V a31v13y
(9)T '©I4

0 f—p

I
0 i OO [P O
A

o |e—pl

US 9,158,882 B2

Sheet 3 of 14

Oct. 13, 2015

U.S. Patent

14V a3Lviay
(9)1 o1

b [[o Y
P Y |« P A_.||Y d
A A A

. ' \X ¢/
=B 4 i ¥ C 4
m g B » Y 4'..7 s
A A A

L \}/ 3/
I 4 2 I 4 V_ Y
—P Y | » i J.III...V d
I N I D |

US 9,158,882 B2

Sheet 4 of 14

Oct. 13, 2015

U.S. Patent

18V a3iv3d
(P)T OI4

U.S. Patent Oct. 13, 2015 Sheet 5 of 14 US 9,158,882 B2

40

41
12
43
a4

RELATED ART

FIG. 2(a)

US 9,158,882 B2

Sheet 6 of 14

Oct. 13, 2015

U.S. Patent

€1 €0
ll* - -

.- —
E
TR
W-: 10
¥

v o1

or o] .v-'-ﬁ'-"!-" 00

1dv a3iviad

(9)C

Ol4

US 9,158,882 B2

Sheet 7 of 14

Oct. 13, 2015

U.S. Patent

1MV d3iviad
(e) o4

4

et

A

4.

d

Td

id

1Y

iy

D

L i

R J—

i

[t

e —

[4:

D —

R m——

&

Td

1P

id

B m—

1Y

US 9,158,882 B2

Sheet 8 of 14

Oct. 13, 2015

U.S. Patent

18V a3Lviad
(a)e ‘ol4

1SOH

US 9,158,882 B2

Sheet 9 of 14

Oct. 13, 2015

U.S. Patent

¥
£ M

18V Q31V13
¥ old

d

L80T
sheyn augadid

ﬁ
%

%

Y

Ly

A%

Y

,

m
[S,
Egreoscorcorcennt
PCRE

TBLY e,

I

I

ey

gt
b suyndig

f213

RIS

d

/
H

b2hy

baty
Tty

F2i
W10

US 9,158,882 B2

Sheet 10 of 14

Oct. 13, 2015

U.S. Patent

(85 Old

L0

psilns g aned

330

s
0 AT

US 9,158,882 B2

Sheet 11 of 14

Oct. 13, 2015

U.S. Patent

Wi

$6 v

2557

{06 O

L oma
h

-

el wgeoud JO 00U VU g0

puE e 0 WoRdWnSnG 0D ppY

i

SHASI0 AT B N0 DO SDEOEAM
aens shidmBies wding 1o soussexd
i ppot s drgad suusgs dne
3G YOO 98 Yon SHRS
SNGG PORERU B

ﬁ

FAT O OF 28 AREIP B8
TR QRO BRI 50 OURS 2YRECT

B H

A Ay Gl mudioe)

oy W

BURLG Fhne pnding

Aagx
WO By pUR wlSEp oK
WG SINNEG INUIRG PUE SO0 SRRSO

US 9,158,882 B2

Sheet 12 of 14

Oct. 13, 2015

U.S. Patent

F AR
aopsiding |
whnG ¥

08
Z sy

THE
{4
ik

afng
stk

abeys

H08
sheig
gy

1555
by
wuatid

i | TEIR

O g e SR
H ' i P nding |

“

o Ftrsi e

US 9,158,882 B2

Sheet 13 of 14

Oct. 13, 2015

U.S. Patent

L 'Oid

F 3% 4 REL gL TEVL
sonsdineg i ST \ f:m 2T e e T >+ i S— 384
Bty ¥ iy st iy
s
¥6Z ¥6L
7R § AN
R . w%ﬁ 5 3%
il I simg ET s smsifey
fitisit ¥ <k ¥ GLHRdL S w sl
..,,.a o S g K

x/ft G

US 9,158,882 B2

Sheet 14 of 14

Oct. 13, 2015

U.S. Patent

g8 Old

P

gig 7

F100K
NOLLY ENSWE N

e HOYLE 3N

FINION
NOLLDF1ES
W B B
ST

FINCON
NOILOYHIXS
W L3O 1ENNYHD
' Oy WA LMD

HOSSADOY]

FOIABC ﬂ
NGO |

FOVHOLS |
ToNHIEXS

e

AN |

MOLVHEO | |
IOVASAING |
¥380 |
S

v/'! ong

as8

G¥e

{ye

US 9,158,882 B2

1

AUTOMATIC PIPELINING OF NOC
CHANNELS TO MEET TIMING AND/OR
PERFORMANCE

BACKGROUND

1. Technical Field

Methods and example implementations described herein
are directed to interconnect architecture, and more specifi-
cally, automatically generating a Network on Chip (NoC)
with pipelining solutions for the interconnects.

2. Related Art

The number of components on a chip is rapidly growing
due to increasing levels of integration, system complexity and
shrinking transistor geometry. Complex System-on-Chips
(SoCs) may involve a variety of components e.g., processor
cores, DSPs, hardware accelerators, memory and [/O, while
Chip Multi-Processors (CMPs) may involve a large number
of homogenous processor cores, memory and /O sub-
systems. In both SoC and CMP systems, the on-chip inter-
connect plays a role in providing high-performance commu-
nication between the various components. Due to scalability
limitations of traditional buses and crossbar based intercon-
nects, Network-on-Chip (NoC) has emerged as a paradigm to
interconnect a large number of components on the chip. NoC
is a global shared communication infrastructure made up of
several routing nodes interconnected with each other using
point-to-point physical links.

Messages are injected by the source and are routed from the
source node to the destination over multiple intermediate
nodes and physical links. The destination node then ejects the
message and provides the message to the destination. For the
remainder of this application, the terms ‘components’,
‘blocks’, ‘hosts’ or ‘cores’ will be used interchangeably to
refer to the various system components which are intercon-
nected using a NoC. Terms ‘routers” and ‘nodes’ will also be
used interchangeably. Without loss of generalization, the sys-
tem with multiple interconnected components will itself be
referred to as a ‘multi-core system’.

There are several topologies in which the routers can con-
nect to one another to create the system network. Bi-direc-
tional rings (as shown in FIG. 1(a)), 2-D (two dimensional)
mesh (as shown in FIG. 1(4)) and 2-D Torus (as shown in FI1G.
1(c)) are examples of topologies in the related art. Mesh and
Torus can also be extended to 2.5-D (two and half dimen-
sional) or 3-D (three dimensional) organizations. FIG. 1(d)
shows a 3D mesh NoC, where there are three layers of 3x3 2D
mesh NoC shown over each other. The NoC routers have up to
two additional ports, one connecting to a router in the higher
layer, and another connecting to a router in the lower layer.
Router 111 in the middle layer of the example has both ports
used, one connecting to the router at the top layer and another
connecting to the router at the bottom layer. Routers 110 and
112 are at the bottom and top mesh layers respectively, there-
fore they have only the upper facing port 113 and the lower
facing port 114 respectively connected.

Packets are message transport units for intercommunica-
tion between various components. Routing involves identify-
ing a path composed of a set of routers and physical links of
the network over which packets are sent from a source to a
destination. Components are connected to one or multiple
ports of one or multiple routers; with each such port having a
unique ID. Packets carry the destination’s router and port ID
for use by the intermediate routers to route the packet to the
destination component.

Examples of routing techniques include deterministic rout-
ing, which involves choosing the same path from A to B for

10

15

20

25

30

35

40

45

50

55

60

65

2

every packet. This form of routing is independent from the
state of the network and does not load balance across path
diversities, which might exist in the underlying network.
However, such deterministic routing may implemented in
hardware, maintains packet ordering and may be rendered
free of network level deadlocks. Shortest path routing may
minimize the latency as such routing reduces the number of
hops from the source to the destination. For this reason, the
shortest path may also be the lowest power path for commu-
nication between the two components. Dimension-order
routing is a form of deterministic shortest path routing in 2-D,
2.5-D, and 3-D mesh networks. In this routing scheme, mes-
sages are routed along each coordinates in a particular
sequence until the message reaches the final destination. For
example in a 3-D mesh network, one may first route along the
X dimension until it reaches a router whose X-coordinate is
equal to the X-coordinate of the destination router. Next, the
message takes a turn and is routed in along Y dimension and
finally takes another turn and moves along the Z dimension
until the message reaches the final destination router. Dimen-
sion ordered routing may be minimal turn and shortest path
routing.

FIG. 2(a) pictorially illustrates an example of XY routing
in a two dimensional mesh. More specifically, FIG. 2(a) illus-
trates XY routing from node ‘34’ to node ‘00°. In the example
of FIG. 2(a), each component is connected to only one port of
one router. A packet is first routed over the x-axis till the
packet reaches node ‘04’ where the x-coordinate of the node
is the same as the x-coordinate of the destination node. The
packet is next routed over the y-axis until the packet reaches
the destination node.

In heterogeneous mesh topology in which one or more
routers or one or more links are absent, dimension order
routing may not be feasible between certain source and des-
tination nodes, and alternative paths may have to be taken.
The alternative paths may not be shortest or minimum turn.

Source routing and routing using tables are other routing
options used in NoC. Adaptive routing can dynamically
change the path taken between two points on the network
based on the state of the network. This form of routing may be
complex to analyze and implement.

A NoC interconnect may contain multiple physical net-
works. Over each physical network, there may exist multiple
virtual networks, wherein different message types are trans-
mitted over different virtual networks. In this case, at each
physical link or channel, there are multiple virtual channels;
each virtual channel may have dedicated buffers at both end
points. In any given clock cycle, only one virtual channel can
transmit data on the physical channel.

NoC interconnects may employ wormhole routing,
wherein, a large message or packet is broken into small pieces
known as flits (also referred to as flow control digits). The first
flit is the header flit, which holds information about this
packet’s route and key message level info along with payload
data and sets up the routing behavior for all subsequent flits
associated with the message. Optionally, one or more body
flits follows the head flit, containing the remaining payload of
data. The final flit is the tail flit, which in addition to contain-
ing the last payload also performs some bookkeeping to close
the connection for the message. In wormhole flow control,
virtual channels are often implemented.

The physical channels are time sliced into a number of
independent logical channels called virtual channels (VCs).
VCs provide multiple independent paths to route packets,
however they are time-multiplexed on the physical channels.
A virtual channel holds the state needed to coordinate the
handling of the flits of a packet over a channel. Ata minimum,

US 9,158,882 B2

3

this state identifies the output channel of the current node for
the next hop of the route and the state of the virtual channel
(idle, waiting for resources, or active). The virtual channel
may also include pointers to the flits of the packet that are
buffered on the current node and the number of flit buffers
available on the next node.

The term “wormbhole” plays on the way messages are trans-
mitted over the channels: the output port at the next router can
be so short that received data can be translated in the head flit
before the full message arrives. This allows the router to
quickly set up the route upon arrival of the head flit and then
opt out from the rest of the conversation. Since a message is
transmitted flit by flit, the message may occupy several flit
buffers along its path at different routers, creating a worm-
like image.

Based upon the traffic between various end points, and the
routes and physical networks that are used for various mes-
sages, different physical channels of the NoC interconnect
may experience different levels of load and congestion. The
capacity of various physical channels of a NoC interconnect
is determined by the width of the channel (number of physical
wires) and the clock frequency at which it is operating. Vari-
ous channels of the NoC may operate at different clock fre-
quencies, and various channels may have different widths
based on the bandwidth requirement at the channel. The
bandwidth requirement at a channel is determined by the
flows that traverse over the channel and their bandwidth val-
ues. Flows traversing over various NoC channels are affected
by the routes taken by various flows. In a mesh or Torus NoC,
there may exist multiple route paths of equal length or number
ot hops between any pair of source and destination nodes. For
example, in FIG. 2(b), in addition to the standard XY route
between nodes 34 and 00, there are additional routes avail-
able, such as YX route 203 or a multi-turn route 202 that
makes more than one turn from source to destination.

In a NoC with statically allocated routes for various traffic
slows, the load at various channels may be controlled by
intelligently selecting the routes for various flows. When a
large number of traffic flows and substantial path diversity is
present, routes can be chosen such that the load on all NoC
channels is balanced nearly uniformly, thus avoiding a single
point of bottleneck. Once routed, the NoC channel widths can
be determined based on the bandwidth demands of flows on
the channels. Unfortunately, channel widths cannot be arbi-
trarily large due to physical hardware design restrictions,
such as timing or wiring congestion. There may be a limit on
the maximum channel width, thereby putting a limit on the
maximum bandwidth of any single NoC channel.

Additionally, wider physical channels may not help in
achieving higher bandwidth if messages are short. For
example, if a packet is a single flit packet with a 64-bit width,
then no matter how wide a channel is, the channel will only be
able to carry 64 bits per cycle of data if all packets over the
channel are similar. Thus, a channel width is also limited by
the message size in the NoC. Due to these limitations on the
maximum NoC channel width, a channel may not have
enough bandwidth in spite of balancing the routes.

To address the above bandwidth concern, multiple parallel
physical NoCs may be used. Each NoC may be called a layer,
thus creating a multi-layer NoC architecture. Hosts inject a
message on a NoC layer; the message is then routed to the
destination on the NoC layer, where it is delivered from the
NoC layer to the host. Thus, each layer operates more or less
independently from each other, and interactions between lay-
ers may only occur during the injection and ejection times.
FIG. 3(a) illustrates a two layer NoC. Here the two NoC
layers are shown adjacent to each other on the left and right,

10

15

20

25

30

35

40

45

50

55

60

65

4

with the hosts connected to the NoC replicated in both left and
right diagrams. A host is connected to two routers in this
example—a router in the first layer shown as R1, and a router
is the second layer shown as R2. In this example, the multi-
layer NoC is different from the 3D NoC, i.e. multiple layers
are on a single silicon die and are used to meet the high
bandwidth demands of the communication between hosts on
the same silicon die. Messages do not go from one layer to
another. For purposes of clarity, the present application will
utilize such a horizontal left and right illustration for multi-
layer NoC to differentiate from the 3D NoCs, which are
illustrated by drawing the NoCs vertically over each other.

In FIG. 3(b), a host connected to a router from each layer,
R1 and R2 respectively, is illustrated. Each router is con-
nected to other routers in its layer using directional ports 301,
and is connected to the host using injection and ejection ports
302. A bridge-logic 303 may sit between the host and the two
NoC layers to determine the NoC layer for an outgoing mes-
sage and sends the message from host to the NoC layer, and
also perform the arbitration and multiplexing between incom-
ing messages from the two NoC layers and delivers them to
the host.

In a multi-layer NoC, the number of layers needed may
depend upon a number of factors such as the aggregate band-
width requirement of all traffic flows in the system, the routes
that are used by various flows, message size distribution,
maximum channel width, etc. Once the number of NoC layers
in NoC interconnect is determined in a design, different mes-
sages and traffic flows may be routed over different NoC
layers. Additionally, one may design NoC interconnects such
that different layers have different topologies in number of
routers, channels and connectivity. The channels in different
layers may have different widths based on the flows that
traverse over the channel and their bandwidth requirements.

In a NoC interconnect, if the traffic profile is not uniform
and there is certain amount of heterogeneity (e.g., certain
hosts talk to each other more frequently than the others), the
interconnect performance may depend a lot on the NoC topol-
ogy and where various hosts are placed in the topology with
respect to each other and to what routers they are connected
to. For example, if two hosts talk to each other frequently and
need higher bandwidth, they should be placed next to each
other. This will reduce the latency for this communication,
and thereby reduce the global average latency, as well as
reduce the number of router nodes and links over which the
high bandwidth of this communication must be provisioned.
Moving two hosts closer to one another may make certain
other hosts far apart since all hosts must fit into the 2D planar
NoC topology without overlapping with each other. Thus,
tradeoffs must be made and the hosts must be placed after
examining the pair-wise bandwidth and latency requirements
between all hosts so that certain global cost and performance
metrics is optimized. The cost and performance metrics can
include the average structural latency between all communi-
cating hosts in number of router hops, or the sum of the
bandwidth between all pair of hosts and the distance between
them in number of hops, or some combination thereof. This
optimization problem is known to be non-deterministic poly-
nomial-time hard (NP-hard) and heuristic based approaches
are often used. The hosts in a system may vary is shape and
sizes with respect to each other which puts additional com-
plexity in placing them in a 2D planar NoC topology, packing
them optimally leaving little whitespaces, and avoiding over-
lapping hosts.

One aspect of optimization of traffic profiles includes
placement of pipeline stages as illustrated in FIG. 4. In a point
to point example illustrated in FIG. 4, there are two routers R1

US 9,158,882 B2

5

402 and R2 404 with input and output channels such as 406-1
and 406-2 between them. Each channel 406 can be configured
to transmit data through 412-1 (from Router 1 to Router 2
using 406-1) and through 412-2 (from Router 2 to Router 1
using 406-2), which in turn is accompanied by a credit signal
that flows in the opposition direction to the transmitted data
(or control). Such credit signal is shown as 414-1 for channel
406-1 and 414-2 for channel 406-2. Each router 402/404
contains a clock, one or more buffers, and an internal flip flop
for data management. Data transmitting router can further
include a registering stage shown as 416-1 when data is trans-
mitted from Router 1 to Router 2, and 416-2 when data is
transmitted from Router 2 to Router 1. Furthermore, receiv-
ing router can include a FIFO shown as 418-1 when data is
received by Router 2 from Router 1, and 418-2 when data is
received by Router 1 from Router 2. To control timing or meet
performance requirements, channels 406 between the routers
402/404 may employ one or more pipeline stages such as
408-1 and 408-2, collectively referred to as pipeline stages
408 hereinafter, within the channels 406. Pipeline stages 408
can include hardware elements such as flip-flops (e.g., JK,
data/delay, etc.) to control the traffic flow. One or more pipe-
line stages 408 can be used as output registers such as 410-1
and 410-2, collectively referred to as output registers 410
hereinafter, which are employed at output channel of each
router 402/404 to control traffic flow. A given router 402/404
may employ a single buffer for handling all traffic through the
router, or can also employ a buffer for each input/output pair
of'channels managed by the router. Further, as the traffic flows
through each of the pipeline stages 406, the traffic can be
controlled to meet timing and or performance requirements
based on flip-flop implemented at the pipeline stage. Pipeline
stages 406 can further be configured to manage routing com-
putation (RC), virtual channel allocation (VA), switch allo-
cation (SA), switch traversal (ST) before it is delivered to the
appropriate output port.

In the related art, there is no automated solution for place-
ment of pipeline stages, and system designers may utilize the
pipeline stages in a suboptimal manner when building a NoC.
Further, as complexity of NoC increases, difficulty of deter-
mining placement and utilization of pipeline stages also
increases.

SUMMARY

The present application is directed to generating a Network
on Chip (NoC) comprising a plurality of channels and a
plurality of routers, wherein the NoC can be configured with
one or more pipeline stages that are positioned at one or more
of'the plurality of channels in the NoC based on an associated
system on chip (SoC) floorplan and a NoC topology.

Aspects of the present application may include a method,
which involves, configuring one or more pipeline stages on a
plurality of output channels coupled with multiple routers
based on several parameters including but not limited to dis-
tance between routers (e.g., for a point to point transaction),
length of channels, clock frequency, wire delay (e.g.,
mm/clock cycle), and timing path within routers themselves.
Such implementation of pipeline stages differs for each router
or combination of routers as routers may have different tim-
ing (as they have a separate clock, buffer, and flip-flop for
managing traffic through the router), which therefore may
necessitate varying configurations of pipeline stages. Param-
eters for defining the pipeline stages can be provided in the
specification for generating NoC, or can be derived from NoC
topology and SoC floorplan, depending on desired imple-

10

15

20

25

30

35

40

45

50

55

60

65

6

mentation. Implemented pipeline stages can then be used to
control timing or meet performance requirements.

Aspect of present application may include a computer
readable storage medium storing instructions for executing a
process. The instructions may involve, configuration of one or
more pipeline stages on a plurality of output channels coupled
with multiple routers based on several parameters including
but not limited to distance between routers (e.g., for a point to
point transaction), length of channels, clock frequency, wire
delay (e.g., mm/clock cycle), and timing path within routers
themselves.

Aspects of present application may include a method,
which involves, for a network on chip (NoC) configuration,
including a plurality of cores interconnected by a plurality of
routers in a heterogeneous or heterogeneous mesh, ring, or
torus arrangement, configuring one or more pipeline stages
on a plurality of output channels coupled with multiple rout-
ers based on several parameters including but not limited to
distance between routers (e.g., for a point to point transac-
tion), length of channels, clock frequency, wire delay (e.g.,
mm/clock cycle), and timing path within routers themselves.

Aspects of the present application may include a system,
which involves, a router and channel detail extraction mod-
ule, a pipeline parameter selection module, and a pipeline
stage implementation module. The router and channel detail
extraction module can be configured to retrieve details of
router and respective output channel at which pipeline stages
are to be implemented. Such details can, in one example, be
extracted from specification of the NoC interconnect. Pipe-
line parameter selection module can be configured to identify
parameters to be incorporated for computing the number of
pipeline stages that need to be implemented on the output
channel in context. Such parameters can include, but are not
limited to, length of output channel, wire delay, and output
registers, clock frequency, and number of clock cycles at one
or both of the source and destination routers. Pipeline stage
implementation module can be configured to incorporate one
ormore of the parameters identified by the pipeline parameter
selection module and compute the number of pipeline stages
required on the output channel in context based on the incor-
porated parameters. Number of pipeline stages identified by
the pipeline stage implementation module can then be incor-
porated suitably on the concerned output channel.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a), 1(b) 1(c) and 1(d) illustrate examples of Bidi-
rectional ring, 2D Mesh, 2D Torus, and 3D Mesh NoC
Topologies.

FIG. 2(a) illustrates an example of XY routing in a related
art two dimensional mesh.

FIG. 2(b) illustrates three different routes between a source
and destination nodes.

FIG. 3(a) illustrates an example of a related art two layer
NoC interconnect.

FIG. 3(b) illustrates the related art bridge logic between
host and multiple NoC layers.

FIG. 4 illustrates an example of pipelining between two
routers.

FIG. 5(a) illustrates a flow diagram for positioning output
register(s) on output channels in accordance with an example
implementation.

FIG. 5(b) illustrates a flow diagram for identifying number
of pipeline stages required for an output channel in accor-
dance with an example implementation.

US 9,158,882 B2

7

FIG. 6 illustrates an example of buffer adjustments for
routers based on the pipeline stages in accordance with an
example implementation.

FIG. 7 illustrates an example of the use of virtual channels
based on the pipeline stages, in accordance with an example
implementation.

FIG. 8 illustrates a computer/server block diagram upon
which the example implementations described herein may be
implemented.

DETAILED DESCRIPTION

The following detailed description provides further details
of the figures and example implementations of the present
application. Reference numerals and descriptions of redun-
dant elements between figures are omitted for clarity. Terms
used throughout the description are provided as examples and
are not intended to be limiting. For example, the use of the
term “automatic” may involve fully automatic or semi-auto-
matic implementations involving user or administrator con-
trol over certain aspects of the implementation, depending on
the desired implementation of one of ordinary skill in the art
practicing implementations of the present application.

In example implementations, a NoC including a plurality
of routers and channels can automatically be generated. Dur-
ing such generation, the NoC can be configured with one or
more pipeline stages that are positioned at one or more of a
plurality of channels in the NoC based on an associated sys-
tem on chip (SoC) floorplan and a NoC topology. Such pipe-
line stages can be utilized based on decisions to implement
output registers for output channels, number of pipelines for
a given point-to-point transmission, and distances and posi-
tion of the pipeline stages on the channel, among other like
parameters. Router pipeline stages can also be configured to
undertake functions including but not limited to routing com-
putation (RC), virtual channel allocation (VA), switch allo-
cation (SA), switch traversal (ST) before packets/message is
delivered to an appropriate output port. Further, one or more
buffers of each router in the NoC may be configured based on
utilization of pipeline stages. Such configuration can involve
updating the specification or register transfer level (RTL), or
can be done during generation of the NoC.

In one aspect of the present application, Network on Chip
(NoC) interconnect architecture can be generated by config-
uring a plurality of channels, a plurality of routers, and one or
more pipeline stages that are positioned at one or more of the
plurality of channels in the NoC based on an associated sys-
tem on chip (SoC) floorplan and a NoC topology. Specifica-
tion, parameters, and bandwidth, latency, and QoS require-
ments ofa NoC plays a crucial role in determining the number
of output registers required to be implemented on output
channels, number of pipeline stages required, and the posi-
tions where the identified number pipeline stages are to be
positioned.

In one aspect of the present application, output channels,
also referred to as channels or “plurality of channels” here-
inafter can be configured to implement and incorporate one or
more output registers operatively coupled with one or more
corresponding routers or handling output of the channels
based on setup time of corresponding router(s) and timing
path within the corresponding router(s).

In another aspect of the present application, number of
pipeline stages required for output channels in a given NoC
can be determined based on one or a combination of param-
eters such as channel length, wire delay, output registers,
clock consumption, and clock frequency between a pair of
routers associated with the concerned channel(s). Based on

10

15

20

25

30

35

40

45

50

55

60

65

8

the computed number of pipeline stages, pipelines can be
generated and implemented in the concerned set of channels.
In one aspect of the application, implemented pipeline stages
can be configured to such that they are utilized as a buffer
supplement, based on which internal buffers of one or more
concerned set of routers can be adjusted. In one aspect of the
application, each pipeline stage can have different compo-
nents, characteristics, attributes, and parameters that enable
customization of the kind of performance and functionality
expected from pipeline stages. For instance, to eliminate,
handle, or reduce backpressure situations between routers,
one or more flip flops, relay stations, clocked repeaters of unit
latency, two-fold storage capacity, among other components
can be incorporates as part of one or more pipeline stages.

In example implementations, configuration and use of
pipeline stages can be based on several parameters. Such
parameters can include, but are not limited to, distance
between routers (e.g., for a point to point transaction), length
of channels, clock frequency, wire delay (e.g., mm/clock
cycle), and timing path within routers themselves. Routers
may have different timing as each router may have a separate
clock, buffer, and flip-flop for managing traffic through the
router, which therefore may necessitate varying configura-
tions of pipeline stages. Parameters can be provided in the
specification for generating NoC, or can be derived from NoC
topology and SoC floorplan, depending on desired imple-
mentation.

In an example implementation, routers in generated NoC
can be associated with one or more output registers at the
output channels of the routers. Use of an output register at the
routers may be based on setup time and hold time of one or
more flip flops within the router. Further, each router may be
allocated a certain amount of clock based on the timing path
in a point to point transaction with another router. In an
example implementation, an output register can be placed at
the output channel of a router when the sum of the clock
consumed by the router and the set up time is at least one clock
cycle. For example, for an output channel ofa router in a point
to point connection utilizing the output channel, clock con-
sumption of the router is “x” such that x<1 clock cycle, as the
clock is shared with another router in the point to point trans-
action. If “x+router setup time” is at least one clock cycle,
then an output register can be placed for that output channel of
the router. Such evaluations can be made for each output
channel for each router in the NoC. Other implementations
are also possible, and the present application is not limited to
this example implementation. For example, the use of the
output register at the routers can be indicated by the NoC
specification, depending on the desired implementation.

In another example implementation, requirement identifi-
cation and positioning of output registers can also be config-
ured based on one or a combination of number of combina-
torial logic stages in a given router’s last internal register from
which signals are sent out, output signals, hold time, setup
time, wire delay with router, skew, and wireloads, among
other parameters. In an example, in case time through the last
combinatorial logic stage in router+setup time+skew+wire
delay is around 1, output register(s) can be incorporated on
output channel. In another example, in case time through the
last combinatorial logic stage in router+setup time+skew+
wire delay is greater than 1, more pipelining may be needed
within the router design as well in output register(s). On
similar lines, wireloads can also be used, independently or
collectively with other attributes, to determine positioning of
output register(s).

Each output channel of one or more routers in a NoC can be
evaluated to determine the number of pipeline stages that

US 9,158,882 B2

9

should be placed at the output channel, if at all the pipeline
stages are needed. In one aspect of the application, number of
pipeline stages that are utilized can be based on length of
output channel, wire delay, and output registers. In example
implementations, number of pipeline stages can be deter-
mined for a given output channel based on wire delay and
length of the channel. For example, given a channel length
“L> and wire delay “W”, one way to estimate the number of
pipeline stages used for the channel can be based on the ratio
of L and W (e.g., L/W). Number of pipeline stages can be
determined as the ratio rounded up to the nearest number, or
can also incorporate clock consumption between the routers
in a point to point situation. Using such a ratio, pipelining can
be implemented so as to reduce the cycle-time created by wire
delay by inserting, say a buffer, between the sender and the
receiver. For example, suppose for a given output channel,
output router consumes a clock of “x”, and corresponding
input router has a clock of “y”. Thus, x+y is the amount of
clock cycles spent at the input and the output of the router. The
number of pipeline stages can be configured based on addi-
tional consumed clock cycles as (L/W)+x+y, which figure can
then be rounded up. Other implementations are also possible,
depending on the desired implementation. For example, out-
put register can also be counted as a pipeline stage, and the
number of pipeline stages for an output channel can be dec-
remented by one from use of the output register. Pipeline
stage can further include synchronous pipeline buffer com-
prising a bank of latches, flip flops, and/or a handshake con-
troller.

In one aspect of the application, once the number of pipe-
line stages is determined for a given output channel, position-
ing of the pipeline stages can be determined based on one or
more parameters. In an example implementation, placement
of pipeline stages can be configured based on wire delay,
clock of output channel, clock frequency, setup time of flip-
flops, and hold time of flip flops, clock skew, and wireloads.
In an example, let “w"’ be the distance between each flip-flop
along an output channel. In such a case, one example can be
w'=w[1-f (setup time+hold time)], wherein w is the wire
delay, f is clock frequency. In the above example, pipeline
stages can be spaced from each other at a distance of w' for
each flip-flop. One may also incorporate time consumed in
output combinatorial logic at transmitting router if output
registering is not used to determine spacing between the
transmitting router and the first pipeline stage on the channel.
For instance, if X is the portion of clock spent in transmitting
combinatorial logic, spacing “w"” between router and first
pipeline stage can be computed as w'*(1-x). Similarly, based
on combinatorial logic between input channel signals at
receiving router and first register stage in the receiving router,
distance between the last pipeline stage and the receiving
router may be determined. Ify is the portion of clock spent in
receiving combinatorial logic, spacing “w"”, which is the
distance between the receiving router and the channel’s last
pipeline stage can be computed as w'*(1-y).

FIG. 5(a) illustrates an example flow diagram 500 for
output register implementation, in accordance with an
example implementation. The flow begins at 501, where
details of router and respective output channel are retrieved
from NoC design and hardware technology library. Although
the present disclosure has been explained with reference to
one router (input or output) and one output channel, the same
is only for simplicity of the description, and the method can
be conducted for any number of routers and channels corre-
sponding thereto.

At 502, number of combinatorial logic states in router’s
last internal register from which signals are sent out are deter-

10

15

20

25

30

35

40

45

50

55

60

65

10

mined. At 503, the method is configured to determine one or
a combination of setup time, hold time, skew, wire delay
within router, and wireloads, among other like parameters. At
504, it is evaluated as to whether the sum of time through the
last combinatorial logic stage in router+setup time+skew+
wire delay is around 1, wherein, at 505, in case the sum is
around 1, one or more output register(s) can be incorporated
and implemented onto the output channel. At 506, in case the
sum is greater than 1, further pipelining may be needed within
the router design as well in the output register(s).

FIG. 5(b) illustrates an example flow diagram 550 for
computation of the number of pipeline stages to be imple-
mented, in accordance with an example implementation. The
flow begins at 551, where details of router and respective
output channel are retrieved from NoC design and hardware
technology library. Although, the number of pipeline stages
to be implemented are based on a number of parameters
including, but not limited to, length of output channel, wire
delay, clock frequency, router clock consumption, and output
registers, among other parameters, the present exemplary
method incorporates wire delay, channel length, and clock
consumption for determining the number of pipeline stages to
be implemented.

At 552, length “L” of output channel under consideration is
computed. At 553, wire delay “W” is computed. At 554, a
ratio is computed between channel length and wire delay to
obtain L/W. The ratio value can be rounded off, either at this
stage or subsequently once the total number of stages has
been computed. At 555, any other parameter(s) such as clock
frequency of output channel, setup time, hold time, presence
of output register(s), skew, and wireloads, among others can
be incorporated. At 556, clock consumption of input and
output routers corresponding to output channel in context can
be evaluated and added to the ratio L/W to determine the total
number of pipeline stages that are required to be implemented
on the output channel. If required, the number of pipeline
stages can be rounded off.

In example implementations, buffer of each router can be
changed based on the number of pipeline stages at each input
and output connect. Buffer can be extended to accommodate
latency requirements. FIG. 6 illustrates an example 600 of
buffer adjustment based on pipeline stages in accordance with
an example implementation. Buffers of the routers 602 and
604 can operate on a credit system as described, for example,
in U.S. patent application Ser. No. 13/886,794 (NET013),
herein incorporated by reference in its entirety for all pur-
poses. When a credit system is employed, buffer latency may
need to be adjusted based on use of pipeline stages 606-1,
606-2, 606-3, 606-4, and 606-5, collectively referred to as
606 hereinafter. In the example of FIG. 6, there are five
pipeline stages 606 placed between routers 602 and 604 in a
point-to-point connection. When data is transmitted per clock
cycle, each pipeline stage 606 may operate on the data, which
may affect when each buffer receives the data. The buffer may
therefore be configured to increase buffer size B by five data
flits (i.e. B=B+5) to increase latency by five cycles for the five
pipeline stages that are included. FIG. 6, in another example,
further illustrates an optional output register at the transmis-
sion Tx side of a router and an input FIFO at the receiving Rx
side of the router. As can be seen, an optional output register
612-1 can be configured at the Tx side of Router 1 and an
optional output register 612-2 can also be configured at the Tx
side of Router 2. Similarly, input FIFO 610-1 is configured at
the Rx side of Router 2 and input FIFO 610-2 is configured at
the Rx side of Router 1. In another example, a combinatorial
cloud 608-1, 608-2, 608-3, 608-4, collectively referred to as
cloud 608 hereinafter, can be configured at the Tx and the Rx

US 9,158,882 B2

11

sides of one or more Routers such that the clouds 608 can
operatively couple output/inputs signals with output register/
input FIFO of the routers. For example, cloud 608-1 connects
output register 612-1 of Router 1 with output signal from the
Router 1. Similarly, cloud 608-2 connects input FIFO 610-1
of Router 2 with input signal from the Router 1. In an example
implementation, combinatorial number of logic stages in a
given cloud 608 are important to determine the output register
612 as well as the pipeline stages 606. For example, if the Tx
cloud (608-1 or 608-4) takes close to ~1 cycle, output register
612 is needed. If output register 612 is decided to be used, the
Tx cloud time is not used in pipeline stage computation, else
it is used in pipeline stage computation, wherein the more the
time it takes through the Tx cloud, the more likely is the need
for additional pipeline stages 606. It should be noted that the
time through a Tx cloud must be <1, without which the router
design needs to be changed as it cannot operate at clock
frequency. The Rx cloud (608-2 or 608-3) must take <1 cycle
as well, and this value can be used to determine the number of
pipeline stages 606 on the channels.

In another example of FIG. 6, there may be a throughput
requirement between the two routers 602 and 604. For
example, suppose a first router 602 consumes “x” clock per
data and the second router 604 consumes “y” clock per data.
In case the total clock consumed (x+y) is less than one cycle,
the buffer can be configured to increase buffer size B based on
number of pipeline stages 606 and clocks consumed to meet
throughput requirement of x+y. In one example, a new buffer
size B' can be computed as B'=B+(number of pipeline stages/
(x+Yy)). Therefore, in the example 600 of FIG. 6, if the clock
consumed by two routers 602 and 604 is half a cycle, the
buffer size can be increased by 5/2 data flits (i.e. B=B+(5/2)).
Other implementations are also possible and the present dis-
closure is not limited by these examples. Depending on the
desired implementation, buffer size can be modified based on
throughput requirements as defined in the specification, as
well as flow control signal credits. In another example imple-
mentation, pipeline stages 606 may be utilized as additional
input buffers for the communication between routers 602 and
604. In such an implementation, buffer at the routers 602 and
604 may not need to be fully extended to cover the round trip
time between the routers, as each of pipeline stage 606 may
act as a single buffer stage. Thus, the total input buffer
requirement at receiving end of a channel will be reduced. In
FIG. 6, at the channel from Router 1 to Router 2, two pipeline
stages 606-1 and 601-2 may be used as two additional input
buffer stages, and therefore the input buffer requirements at
Router 604 for this channel may be reduced by up to 2.
Similarly, input buffer requirement at Router 602 for the
channel from router 604 to router 602 may be reduced by up
to 3.

FIG. 7 illustrates an example 700 of use of virtual channels
based on pipeline stages 708, in accordance with an example
implementation. Buffer of each router 702 and 704 may be
allocated among virtual channels 706-1, 706-2, and 706-3 for
router 702 and 706-4, 706-5, and 706-6 for router 704 based
on throughput requirements of the virtual channels, collec-
tively referred to 706 hereinafter. Example 700 further illus-
trates output registers and input FIFO’s being configured for
one or more of the routers 702 and 704, wherein output
registers 714-1 and 714-2 are configured at Tx sides of the
routers and input FIFO’s 712-1 and 712-2 are configured on
the Rx sides of the routers. Furthermore, the input/output
signals can be operatively coupled with the router’s registers/
FIFO by means of a plurality of computational clouds 710-1,
710-2, 710-3, and 710-4, collectively referred to as 710 here-
inafter, such that time through each cloud 710 must be <1

10

15

20

25

30

35

40

45

50

55

60

65

12

cycle, without which the routers cannot operate at the desired
clock frequency and would need to change their design. In the
example 700 of FIG. 7, there are three virtual channels 706 for
each of the illustrated pair of routers 702/704 to facilitate
point-to-point communication between the two routers. If
virtual channels 706 have equal throughput, buffer can be
divided equally between each of the virtual channels 706.
However, one should appreciate that virtual channels 706
may also have unequal throughput requirements and any such
change in buffer allocation amongst virtual channels 706 is
completely within the scope of the present application. Imple-
mentation of buffer allocation can be based on an increase of
buffer as illustrated in FIG. 6. Buffer allocation for each of the
virtual channels 706 can be allocated proportionally based on
throughput requirements of each of the virtual channels 706.
Based on throughput requirements of the virtual channels
706, size of one or more virtual channels 706 associated with
routers 702 and 704 can be also assessed and defined.

FIG. 8 illustrates an example computer system 800 on
which example implementations may be implemented. The
computer system 800 includes a server 805 which may
involve an I/O unit 835, storage 860, and a processor 810
operable to execute one or more units as known to one of skill
in the art. The term “computer-readable medium” as used
herein refers to any medium that participates in providing
instructions to processor 810 for execution, which may come
in the form of computer readable storage mediums, such as,
but not limited to optical disks, magnetic disks, read-only
memories, random access memories, solid state devices and
drives, or any other types of tangible media suitable for stor-
ing electronic information, or computer readable signal medi-
ums, which can include media such as carrier waves. The 1/0O
unit processes input from user interfaces 840 and operator
interfaces 845 which may utilize input devices such as a
keyboard, mouse, touch device, or verbal command.

The server 805 may also be connected to an external stor-
age 850, which can contain removable storage such as a
portable hard drive, optical media (CD or DVD), disk media
or any other medium from which a computer can read execut-
able code. The server may also be connected an output device
855, such as a display to output data and other information to
a user, as well as request additional information from a user.
The connections from the server 805 to the user interface 840,
the operator interface 845, the external storage 850, and the
output device 855 may via wireless protocols, such as the
802.11 standards, Bluetooth® or cellular protocols, or via
physical transmission media, such as cables or fiber optics.
The output device 855 may therefore further act as an input
device for interacting with a user.

The processor 810 may execute one or more modules.
System 800 can include a router and channel detail extraction
module 811, a pipeline parameter selection module 812, and
a pipeline stage implementation module 813. The router and
channel detail extraction module 811 can be configured to
retrieve details of router and respective output channel at
which pipeline stages are to be implemented. Such details can
be extracted from specification of the NoC interconnect.
Pipeline parameter selection module 812 can be configured to
identify parameters to be incorporated for computing the
number of pipeline stages that need to be implemented on the
output channel in context. Such parameters can include, but
are not limited to, length of output channel, wire delay, and
output registers, clock frequency, and number of clock cycles
at one or both of the source and destination routers. Pipeline
stage implementation module 813 can be configured to incor-
porate one or more of the parameters identified by the Pipe-
line parameter selection module 812 and compute the number

US 9,158,882 B2

13

of pipeline stages required on the output channel in context
based on the incorporated parameters. For instance, given a
channel length “L” and wire delay “W”, one way to estimate
the number of pipeline stages used for the channel can be
based on the ratio of L and W (e.g., L/W). Number of pipeline
stages can be determined as the ratio rounded up to the nearest
number, or can also incorporate clock consumption between
the routers in a point to point situation. For example, suppose
for a given output channel, output router consumes a clock of
“x”, and corresponding input router has a clock of “y”. Thus,
x+y is the amount of clock cycles spent at the input and the
output of the router. The number of pipeline stages can be
configured based on additional consumed clock cycles as
(L/W)+x+y, which figure can then be rounded up. Number of
pipeline stages identified by the pipeline stage implementa-
tion module 813 can then be incorporated suitably on the
concerned output channel.

In some example implementations, the computer system
800 can be implemented in a computing environment such as
a cloud. Such a computing environment can include the com-
puter system 800 being implemented as or communicatively
connected to one or more other devices by a network and also
connected to one or more storage devices. Such devices can
include movable user equipment (UE) (e.g., smartphones,
devices in vehicles and other machines, devices carried by
humans and animals, and the like), mobile devices (e.g.,
tablets, notebooks, laptops, personal computers, portable
televisions, radios, and the like), and devices designed for
stationary use (e.g., desktop computers, other computers,
information kiosks, televisions with one or more processors
embedded therein and/or coupled thereto, radios, and the
like).

Furthermore, some portions of the detailed description are
presented in terms of algorithms and symbolic representa-
tions of operations within a computer. These algorithmic
descriptions and symbolic representations are the means used
by those skilled in the data processing arts to most effectively
convey the essence of their innovations to others skilled in the
art. An algorithm is a series of defined steps leading to a
desired end state or result. In the example implementations,
the steps carried out require physical manipulations of tan-
gible quantities for achieving a tangible result.

Moreover, other implementations of the present applica-
tion will be apparent to those skilled in the art from consid-
eration of the specification and practice of the example imple-
mentations disclosed herein. Various aspects and/or
components of the described example implementations may
be used singly or in any combination. It is intended that the
specification and examples be considered as examples, with a
true scope and spirit of the application being indicated by the
following claims.

What is claimed is:

1. A method, comprising:

generating a Network on Chip (NoC) comprising a plural-

ity of channels and a plurality of routers, the NoC con-
figured with one or more pipeline stages that are posi-
tioned at one or more of the plurality of channels in the
NoC based on an associated system on chip (SoC) floor-
plan and a NoC topology;

for each of the plurality of channels in the NoC, generating

an output register for a corresponding one of the plural-
ity of routers handling output for the each of the one or
more channels in the NoC based on a setup time of the
corresponding router and a timing path within the cor-
responding router; and

configuring a physical SoC with the generated NoC and

generated output registers.

10

15

20

25

30

35

40

45

50

55

65

14

2. The method of claim 1, further comprising:

determining a number of the one or more pipeline stages

for each of'the plurality of channels in the NoC based on
a clock frequency between a pair of the plurality of
routers associated with the each of the one or more
channels and a length of the each of the one or more
channels, and

generating the one or more pipeline stages for the each of

the plurality of channels based on the number deter-
mined by the determining.

3. The method of claim 2, further comprising positioning
each of the generated one or more pipeline stages for the each
of' the plurality of channels based on a wire delay of the each
of the plurality of channels.

4. The method of claim 2, further comprising adjusting a
buffer at each of the plurality of routers based on the number
of the one or more pipeline stages between a pairing of the
each of the plurality of routers with an adjacent one of the
plurality of routers.

5. The method of claim 4, wherein adjusting the buffer at
each of the plurality of routers is further based on a through-
put requirement between the pairing of the each of the plu-
rality of routers with the adjacent one of the plurality of
routers.

6. The method of claim 5, further comprising sizing one or
more virtual channels associated with the each of the plurality
of routers based on the throughput requirement.

7. The method of claim 4, wherein each of the one or more
pipeline stages is configured to be utilized as a buffer supple-
ment, and wherein the adjusting the buffer at each of the
plurality of routers is based on ones of the one or more
pipeline stages utilized by the each of the plurality of routers
as a buffer supplement.

8. A non-transitory computer readable storage medium
storing instructions for executing a process, the instructions
comprising:

generating a Network on Chip (NoC) comprising a plural-

ity of channels and a plurality of routers, the NoC con-
figured with one or more pipeline stages that are posi-
tioned at one or more of the plurality of channels in the
NoC based on an associated system on chip (SoC) floor-
plan and a NoC topology;

for each of the plurality of channels in the NoC, generating

an output register for a corresponding one of the plural-
ity of routers handling output for the each of the one or
more channels in the NoC based on a setup time of the
corresponding router and a timing path within the cor-
responding router; and

configuring a physical SoC with the generated NoC and

generated output registers.

9. The non-transitory computer readable storage medium
of claim 8, wherein the instructions further comprise:

determining a number of the one or more pipeline stages

for each of'the plurality of channels in the NoC based on
a clock frequency between a pair of the plurality of
routers associated with the each of the one or more
channels and a length of the each of the one or more
channels, and

generating the one or more pipeline stages for the each of

the plurality of channels based on the number.

10. The non-transitory computer readable storage medium
of claim 9, wherein the instructions further comprise posi-
tioning each of the generated one or more pipeline stages for
the each of the plurality of channels based on a wire delay of
the each of the plurality of channels.

11. The non-transitory computer readable storage medium
of claim 9, wherein the instructions further comprise adjust-

US 9,158,882 B2

15

ing a buffer at each of the plurality of routers based on the
number of the one or more pipeline stages between a pairing
of the each of the plurality of routers with an adjacent one of
the plurality of routers.

12. The non-transitory computer readable storage medium
of claim 11, wherein adjusting the buffer at each of the plu-
rality of routers is further based on a throughput requirement
between the pairing of the each of the plurality of routers with
the adjacent one of the plurality of routers.

13. The non-transitory computer readable storage medium
of claim 12, wherein the instructions further comprise sizing
one or more virtual channels associated with the each of the
plurality of routers based on the throughput requirement.

14. The non-transitory computer readable storage medium
of claim 11, wherein each of the one or more pipeline stages
is configured to be utilized as a buffer supplement, and
wherein the adjusting the buffer at each of the plurality of
routers is based on ones of the one or more pipeline stages
utilized by the each of the plurality of routers as a buffer
supplement.

10

15

20

16

